Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X0423
Acta Limnologica Brasiliensia
Artigo Original

Hydrologic cycle influence on desmid abundance in a shallow floodplain lagoon in the Brazilian semiarid region

Influência do ciclo hidrológico sobre a abundância de desmídias em uma lagoa rasa de planície de inundação do semiárido brasileiro

Maria Aparecida dos Santos; Carla Ferragut; Daniela Mariano Lopes da Silva; Carlos Wallace do Nascimento Moura

Downloads: 0
Views: 215

Abstract

Aim: Knowledge of hydrological characteristics is essential for understanding ecological processes in floodplains, which can support sustainable management. We evaluated environmental variations in a shallow floodplain lagoon located in the Chapada Diamantina, Andaraí, Bahia. We aim to identify phases of the hydrologic cycle and their influence on desmid density, which is a group of algae known for its potential as bioindicator of trophic changes.

Methods: Bimonthly samplings were performed at four points in the lagoon. Abiotic (temperature, conductivity, pH, transparency, depth, dissolved oxygen, total and dissolved nutrients) and biotic (macrophyte cover, phytoplankton chlorophyll-a, and desmid density) variables were determined. The Trophic State Index (TSI) was calculated based on phytoplankton chlorophyll-a, and total phosphorus concentration.

Results: The lagoon was characterized by well-oxygenated, slightly acidic waters with low electrical conductivity. According to the TSI, the lagoon varied from mesotrophic to hypereutrophic during the study period. The driest months (August and October) were marked by high water transparency, low depth, nitrogen concentration, and macrophyte coverage. The highest value of accumulated precipitation was registered in December, when there was an increase in depth and a decrease in electrical conductivity and PT concentration. Two phases of the hydrologic cycle were evidenced and determined by the depth and nutrient concentrations. The highest abundance of desmids occurred at the end of the rainy season when the nutrient availability and pH were higher, and the depth was reduced.

Conclusions: Our results suggest that the flood pulse was the determining factor of the local environmental conditions and that, together with the macrophyte morphological traits, it influenced desmid abundance and distribution in a floodplain lagoon in the semiarid region.

Keywords

caatinga, phases of hydrologic cycle, flood pulse, periphytic desmids

Resumo

Objetivo: O conhecimento das características hidrológicas é essencial para a compreensão dos processos ecológicos nas planícies de inundação, o que pode subsidiar um gerenciamento sustentável. Nós avaliamos as variações ambientais em uma lagoa rasa de planície de inundação, localizada na Chapada Diamantina, Andaraí, Bahia. Nosso objetivo foi identificar as fases do ciclo hidrológico e sua influência na densidade de desmídias, um grupo de algas conhecido por seu potencial como bioindicador de mudanças tróficas.

Métodos: Amostragens bimestrais foram realizadas em quatro pontos da lagoa. Foram determinadas as variáveis abióticas (temperatura, condutividade, pH, transparência, profundidade, oxigênio dissolvido, concentração de nutrientes totais e dissolvidos) e bióticas (cobertura de macrófitas, clorofila-a do fitoplâncton e densidade de desmídias). O Índice de Estado Trófico (IET) foi calculado com base na clorofila-a do fitoplâncton e concentração de fósforo total.

Resultados: A lagoa foi caracterizada por águas bem oxigenadas, levemente ácidas e com baixa condutividade elétrica. De acordo com o IET, a lagoa variou de mesotrófica a hipereutrófica durante o período de estudo. Os meses mais secos (agosto e outubro) foram marcados pela elevada transparência, baixa profundidade, concentração de nitrogênio e cobertura de macrófitas. O maior valor de precipitação acumulada foi registrado em dezembro, quando houve um aumento da profundidade e a diminuição da condutividade elétrica e concentração de PT. Evidenciou-se ocorrência de duas fases limnológicas, as quais foram determinadas pela profundidade e concentração de nutrientes. A maior abundância de desmídias ocorreu no final da época chuvosa, quando a disponibilidade de nutrientes e pH eram elevados e a profundidade reduzida.

Conclusões: Nossos resultados sugerem que o pulso hidrológico foi o fator determinante da condição limnológica e que, juntamente com as características morfológicas das macrófitas, tenha influenciado na abundância e distribuição das desmídias em uma lagoa de planície de inundação no semiárido.

Palavras-chave

caatinga, fases do ciclo hidrológico, pulso de inundação, desmídias perifíticas

Referências

Adame, K.L., Dunck, B., & Rodrigues, L., 2018. Community in lentic environments of the Upper Paraná River floodplain: seasonal and spatial variation. Acta Limnol. Bras. 30, e205. http://doi.org/10.1590/s2179-975x5017.

Algarte, V.M., Dunck, B., Leandrini, J.A., & Rodrigues, L., 2016. Periphytic diatom ecological guilds in floodplain: ten years after dam. Ecol. Indic. 69, 407-414. http://doi.org/10.1016/j.ecolind.2016.04.049.

Algarte, V.M., Moresco, C., & Rodrigues, L., 2006. Algas do perifíton de distintos ambientes na planície de inundação do alto rio Paraná. Acta Sci. Biol. Sci. 28(3), 243-251.

Algarte, V.M., Siqueira, N.S., Murakami, E.A., & Rodrigues, L., 2009. Effects of hydrological regime and connectivity on the interanual variation in taxonomic similarity of periphytic algae. Braz. J. Biol. 69(2, Suppl.), 609-616. PMid:19738967. http://doi.org/10.1590/S1519-69842009000300015.

Algarte, V.M., Siqueira, N.S., Ruwer, D.T., Osório, N.C., & Rodrigues, L., 2017. Riqueza de algas perifíticas e sua relação com atributos hidrológicos. Braz. J. Bot. 40, 735-740. http://doi.org/10.1007/s40415-017-0383-2.

American Public Health Association – APHA, 2005. Standard Methods for the Examination of Water and Wastewater. Washington: American Public Health Association, American Water Works Association, Water Environment Federation.

Bicudo, C.E.M., & Menezes, M., 2017. Gêneros de algas de águas continentais do Brasil: chave para identificação e descrições. São Carlos: Rima.

Bozelli, R.L., Thomaz, S.M., Padial, A.A., Lopes, P.M., & Bini, L.M., 2015. Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753(1), 233-241. http://doi.org/10.1007/s10750-015-2209-1.

Camargo, J.C., Loverde-Oliveira, S.M., Sophia, M.G., & Nogueira, F.M.B., 2009. Desmídias perifíticas da baía do Coqueiro, Pantanal Matogrossense – Brasil. Iheringia 64(2), 25-41.

Cano, M.G., Casco, M.A., Solari, L.C., MacDonagh, M.E., Gabellone, N.A., & Claps, M.C., 2008. Implications of rapid changes in chlorophyll-a of plankton, epipelon, and epiphyton in a Pampean shallow lake: an interpretation in terms of a conceptual model. Hydrobiologia 614(1), 33-45. http://doi.org/10.1007/s10750-008-9534-6.

Carapunarla, L., Baumgartner, D., & Rodrigues, L., 2014. Community structure of periphytic algae in a floodplain lake: a longterm study. Acta Sci. Biol. Sci. 36(2), 147-154. http://doi.org/10.4025/actascibiolsci.v36i2.19560.

Carvalho, P., Bini, L.M., Thomaz, S.M., Oliveira, L.G., Robertson, B., Tavechio, W.L.G., & Darwisch, A.J., 2001. Comparative limnology of South American floodplain lakes and lagoons. Acta Scientiarum 23(2), 265-273.

Casartelli, M., & Ferragut, C., 2017. The effects of habitat complexity on periphyton biomass accumulation and taxonomic structure during colonization. Hydrobiologia 807(1), 233-246. http://doi.org/10.1007/s10750-017-3396-8.

Coesel, P.F., 1983. The significance of desmids as indicators of the trophic status of freshwaters. Schweiz. Zeitsch. Hydrobiol. 45, 388-393.

Coesel, P.F.M., 1996. Biogeography of desmids. Hydrobiologia 336(1-3), 41-53. http://doi.org/10.1007/BF00010818.

Costa, F.M., Ramos, G.J.P., Oliveira, I.B., Bicudo, C.E.M., & Moura, C.W.N., 2018. Five new taxa and a new record of Euastrum (Desmidiaceae) from the Chapada Diamantina region, Bahia State, Brazil. Phytotaxa 372(3), 193-202. http://doi.org/10.11646/phytotaxa.372.3.2.

Costa, F.M., Ramos, G.J.P., Oliveira, I.B., Bicudo, C.E.M., & Moura, C.W.N., 2020. Notes on the genus Euastrum (Desmidiaceae) in Brazil, with description of a new species. Phytotaxa 451(1), 34-44. http://doi.org/10.11646/phytotaxa.451.1.3.

Centro de Previsão de Tempo e Estudos Climáticos/Instituto Nacional de Pesquisas Espaciais – CPTEC/INPE, 2021. Retrieved in 2021, January 20, from http://tempo.cptec.inpe.br/cidades/estendida/470.

Depetris, P.J., 2007. The Parana river under extreme flooding: a hydrological and hydro-geochemical insight. Interciencia 32(10), 656-662.

Dunk, B., Algarte, V.M., Cianciaruso, M.V., & Rodrigues, L., 2016. Functional diversity and trait–environment relationships of periphytic algae in subtropical floodplain lakes. Ecol. Indic. 67, 257-266. http://doi.org/10.1016/j.ecolind.2016.02.060.

Esteves, F.A., & Amado, A.M., 2011. Ciclo do Nitrogênio. In: Esteves, F.A., ed. Fundamentos de limnologia. Rio de Janeiro: Interciência, 239-258, 3 ed.

Felisberto, S.A., Rodrigues, L., & Santos, H.S., 2014. Taxonomical and ecological characteristics of the desmids placoderms in reservoir: analyzing the spatial and temporal distribution. Acta Limnol. Bras. 26(4), 392-403. http://doi.org/10.1590/S2179-975X2014000400007.

Ferreiro, N., Giorgi, A., & Feijoó, C., 2013. Effects of macrophyte architecture and leaf shape complexity on structural parameters of the epiphytic algal community in a Pampean stream. Aquat. Ecol. 47(4), 389-401. http://doi.org/10.1007/s10452-013-9452-1.

Flora do Brasil, 2022. Zygnematophyceae in Flora do Brasil. Rio de Janeiro: Jardim Botânico do Rio de Janeiro. Retrieved in 2022, January 27, from http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB119508.

Förster, K., 1964. Desmidiaceen aus Brasilien, 2: Bahia, Goyaz, Piauhy und Nord Brasilien. Hydrobiologia 23, 321-505. http://doi.org/10.1007/BF00179497.

França, F., Melo, E., Oliveira, I.B., Reis, A.T.C.C., Alves, G.L., & Costa, M.F., 2010. Plantas vasculares das áreas alagadas dos Marimbus, Chapada Diamantina, BA, Brasil. Hoehnea 37(4), 719-730. http://doi.org/10.1590/S2236-89062010000400003.

Funch, R., 2002. Um guia para a chapada Diamantina. Cruz da Almas: Nova Civilização.

Gaiser, E.E., 2009. Periphyton as an indicator of restoration in the Florida Everglades. Ecol. Indic. 9(6), S37-S45. http://doi.org/10.1016/j.ecolind.2008.08.004.

Gaiser, E.E., Childers, D.L., Jones, R.D., Richards, J.F., Scinto, L.J., & Trexler, J.C., 2006. Periphyton responses to eutrophication in the florida everglades: cross-system patterns of structural and compositional change. Limnol. Oceanogr. 51(1), 617-630. http://doi.org/10.4319/lo.2006.51.1_part_2.0617.

Garraza, G.G., Mataloni, G., & Burdam, L., 2019. Desmids (Zygnematophyceae, Streptophyta) community drivers and potential as a monitoring tool in South American peat bogs. Hydrobiologia 833(1), 125-141. http://doi.org/10.1007/s10750-019-3895-x.

Giulietti, A.M., Pirani, J.R., & Harley, R.M., 1997. Espinhaço Range region, eastern Brazil. In: Davis, S.D., Heywood, V.H., Herrera-MacBryde, O., Villa-Lobos, J. & Hamilton, A.C., eds. Centres of plant diversity: a guide and strategy for their conservation. Oxford: Information Press, 397-404, 3 ed.

Goldsborough, L.G., & Robinson, G.G.C., 1996. Pattern in wetlands. In: Stevenson, R.J., Bothwell, M.L. & Lowe, R.L., eds. Algal ecology: freshwater benthic ecosystems. San Diego: Academic, 77–117. http://doi.org/10.1016/B978-012668450-6/50033-3.

Gonçalves, C.N., 2021. Variações na Vazão do Rio Santo Antônio, Relação com o Pantanal Marimbus e a Importância para a Biodiversidade na Região do Parque Nacional da Chapada Diamantina/BA. Biodiv. Bras. 11(4), 21-45. http://doi.org/10.37002/biobrasil.v11i4.1782.

Hansen, G., Stasny, J., Moestrup, O., & Lundholm, N., 2018. Diversity and conservation of desmids in Bornholm, Denmark – revisiting after 130 years. Nord. J. Bot. 36(10), e01994. http://doi.org/10.1111/njb.01994.

Instituto do Meio Ambiente e Recursos Hídricos – INEMA, 2020. APA Marimbus/Iraquara. Retrieved in 2020, May 20, from http://www.inema.ba.gov.br/gestao-2/unidades-de-conservacao/apa/apa-marimbus-iraquara/.

Junk, W.J., & Wantzen, K.M., 2004. The flood pulse concept: new aspects, approaches and applications - an update. In: Welcomme, R.L. & Petr, T., eds. Proceedings of the II International Symposium on the Management of Large Rivers for Fisheries. Bangkok: Food and Agriculture Organization and Mekong River Commission, FAO Regional Office for Asia and the Pacific, 117-149.

Junk, W.J., 2002. Long-term environmental trends and the future of tropical wetlands. Environ. Conserv. 29(4), 414-435. http://doi.org/10.1017/S0376892902000310.

Junk, W.J., 2005. Flood pulsing and the linkages between terrestrial, aquatic, and wetland systems. SIL Proc. 29(1), 11-38. https://doi.org/10.1080/03680770.2005.1190197.

Junk, W.J., Piedade, M.T.F., Lourival, R., Wittmann, F., Kandus, P., Lacerda, L.D., Bozelli, R.L., Esteves, F.A., Nunes da Cunha, C., Maltchik, L., Schöngart, J., Schaeffer-Novelli, Y., & Agostinho, A.A., 2013. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat. Conserv. 24(1), 5-22. http://doi.org/10.1002/aqc.2386.

Krasznai, E., Fehér, G., Borics, G., Varbiro, G., Grigorszky, I., & Tóthmérész, B., 2008. Use of desmids to assess the natural conservation value of a Hungarian oxbow (Malom-Tisza, NE-Hungary). Biologia (Bratisl.) 63(6), 928-935. http://doi.org/10.2478/s11756-008-0144-6.

Krejci, M.R., Finney, L., Vogt, S., & Joester, D., 2011. Selective sequestration of strontium in desmid green algae by biogenic Co-precipitation with barite. ChemSusChem 4(4), 470-473. PMid:21488170. http://doi.org/10.1002/cssc.201000448.

Lamparelli, M.C., 2004. Graus de trofia em corpos d’água do Estado de São Paulo: avaliação dos métodos de monitoramento. [Tese de doutorado em Ciências na Área de Ecossistemas Terrestres e Aquáticos]. São Paulo: Universidade de São Paulo.

Leandrini, J.A., Fonseca, I.A., & Rodrigues, L., 2008. Characterization of habitats based on algal periphyton biomass in the Upper Paraná River floodplain. Braz. J. Biol. 68(3), 503-509. PMid:18833470. http://doi.org/10.1590/S1519-69842008000300006.

Legendre, P., & Legendre, L., 2012. Numerical ecology. London: Elsevier Science Publication.

Lima, A.C.P., França, F., & Jesus, T.B., 2018. Evaluation of heavy metals in levels of wetland Marimbus, Bahia, Brazil. Eng. Sanit. Ambient. 23(3), 591-598. http://doi.org/10.1590/s1413-41522018164218.

Lopes, M.R.M., & Bicudo, C.E.M., 2003. Desmidioflórula de um lago da planície de inundação do Rio Acre, estado do Amazonas, Brasil. Acta Amazon. 33(2), 167-212. http://doi.org/10.1590/1809-4392200332212.

Loverde-Oliveira, S.M., & Huszar, V.L.M., 2007. Phytoplankton ecological responses to the flood pulse in a Pantanal lake. Cent. Brazil. Acta Limnol. Bras. 19(2), 117-130.

Lund, J.W.G., Kipling, C., & Le-Cren, E.D., 1958. The inverted microscope method of estimating algal number and the statistical basis of estimating by counting. Hydrobiologia 11(2), 143-170. http://doi.org/10.1007/BF00007865.

Marker, A.F.H., Nusch, E.A., Rai, H., & Riemann, B., 1980. The measurement of photosynthetic pigments in freshwaters and standardization of methods: conclusions and recommendations. Arch. Hydrobiol. 14, 91-106.

Mayora, G., Devercelli, M., & Giri, F., 2013. Spatial variability of chlorophyll-a and abiotic variables in a river–floodplain system during different hydrological phases. Hydrobiologia 717(1), 51-63. http://doi.org/10.1007/s10750-013-1566-x.

McAbendroth, L., Ramsay, P.M., Foggo, A., Rundle, S.D., & Bilton, D.T., 2005. Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos 111(2), 279-290. http://doi.org/10.1111/j.0030-1299.2005.13804.x.

Neif, E.M., Behrend, R.D.L., & Rodrigues, L., 2013. Seasonal dynamics of the structure of epiphytic algal community on different substrates from a Neotropical floodplain. Rev. Bras. Bot. Braz. J. Bot. 36(3), 169-177. http://doi.org/10.1007/s40415-013-0021-6.

Nemes‑Kókai, Z., Borics, G., Csépes, E., Lukács, Á., Török, P., T-Krasznai, E., Bácsi, I., & B-Béres, V., 2024. Role of microhabitats in shaping diversity of periphytic diatom assemblages. Hydrobiologia 851, 959-972. http://doi.org/10.1007/s10750-023-05336-x.

Neustupa, J., Stastny, J., & Woodard, K., 2023. Ecological monitoring of disturbed mountain peatlands: an analysis based on desmids. Biodivers. Conserv. 32(8-9), 2671-2691. http://doi.org/10.1007/s10531-023-02624-9.

Pacini, A., Mazzoleni, S., Battisti, C., & Ricotta, C., 2009. More rich means more diverse: extending the ‘environmental heterogeneity hypothesis’ to taxonomic diversity. Ecol. Indic. 9(6), 1271-1274. http://doi.org/10.1016/j.ecolind.2009.01.003.

Pataro, L., Romero, R., & Roque, N., 2013. Four new species of Microlicia (Melastomataceae) from Chapada Diamantina, Bahia, Brazil. Kew Bull. 68(2), 1-9. http://doi.org/10.1007/s12225-013-9448-y.

Programa de Monitoramento Climático em Tempo Real da Região Nordeste – Proclima, 2021. Balanço Hídrico no município de Andaraí. Cachoeira Paulista: CPTEC/INPE. Retrieved in 2021, January 24, from http://proclima.cptec.inpe.br/balanco_hidrico/balancohidrico.shtml

Development Core Team, 2021. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Retrieved in 2022, October 20, from https://www.r-project.org/

Ramos, G.J.P., Costa, F.M., Santos, M.A., & Moura, C.W.N., 2019. Taxonomic novelties, new records, and rare species of desmids from the Chapada Diamantina region, Brazil. Phytotaxa 391(3), 185-196. http://doi.org/10.11646/phytotaxa.391.3.2.

Ramos, G.J.P., Oliveira, I.B., & Moura, C.W.N., 2021c. Taxonomic updates and a new variety of Cosmarium redimitum from South America. Phytotaxa 514(1), 77-84. http://doi.org/10.11646/phytotaxa.514.1.5.

Ramos, G.J.P., Santos, M.A., & Moura, C.W.N., 2021a. Taxonomic notes on some Cosmarium species (Desmidiaceae, Zygnematophyceae) from Brazil. Phytotaxa 483(3), 291-299. http://doi.org/10.11646/phytotaxa.483.3.9.

Ramos, G.J.P., Santos, M.A., & Moura, C.W.N., 2021b. How hidden is the diversity of the genus Cosmarium (Desmidiaceae) in the Brazilian Caatinga? Acta Bot. Bras. 35(2), 188-214. http://doi.org/10.1590/0102-33062020abb0370.

Ramos, G.J.P., Santos, M.A., Oliveira, I.B., & Moura, C.W.N., 2020. Taxonomic and nomenclatural notes on five taxa of Cosmarium (Desmidiaceae, Zygnematophyceae) from Brazil. Not. Algarum 146, 1-5.

Ribeiro, C.A., Ramos, G.J.P., Oliveira, I.B., & Moura, C.W.N., 2015. Micrasterias (Zygnematophyceae) de duas áreas do Pantanal dos Marimbus (Baiano e Remanso), Chapada Diamantina, Bahia, Brasil. Sitientibus Sér. Ciênc. Biol. 15, 1-12. http://doi.org/10.13102/scb578.

Roberto, M.C., Santana, F.N., & Thomaz, S.M., 2013. Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Braz. J. Biol. 69(2, Suppl.), 717-725. PMid:19738977.

Rodrigues, L., & Bicudo, D.C., 2001. Similarity among periphyton algal communities in a lentic-lotic gradient of the upper Paraná river floodplain, Brazil. Rev. Bras. Bot. Braz. J. Bot. 24(3), 235-248. http://doi.org/10.1590/S0100-84042001000300001.

Santos, M.A., Ferragut, C., Simões, N.R., Silva, D.M.L., & Moura, C.W.N., 2022. What are the main environmental predictors of differences in the community structure of periphytic desmids in a semi-arid floodplain lake? Aquat. Ecol. 56(4), 1-17. http://doi.org/10.1007/s10452-022-09957-7.

Santos, T.R., Ferragut, C., & Bicudo, C.E.M., 2013. Does macrophyte architecture influence periphyton? Relationships among Utricularia foliosa, periphyton assemblage structure and its nutrient (C, N, P) status. Hydrobiologia 714(1), 71-83. http://doi.org/10.1007/s10750-013-1531-8.

Sartory, D.P., & Grobbelaar, J.U., 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114(3), 177-187. http://doi.org/10.1007/BF00031869.

Shetty, K., & Gulimane, K., 2022. Biomonitoring of freshwater lentic habitats using desmids. Limnology 23(1), 245-251. http://doi.org/10.1007/s10201-021-00664-0.

Souza, M.L., Pellegrini, B.G., & Ferragut, C., 2015. Periphytic algal community structure in relation to seasonal variation and macrophyte richness in a shallow tropical reservoir. Hydrobiologia 755(1), 183-196. http://doi.org/10.1007/s10750-015-2232-2.

Thomaz, S.M., Bini, L.M., & Bozelli, R.L., 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579(1), 1-13. http://doi.org/10.1007/s10750-006-0285-y.

Thomaz, S.M., Bini, L.M., & Pagioro, T.A., 2004. Métodos em Limnologia: macrófitas aquáticas. In: Bicudo, C.E. & Bicudo, D.C., eds. Amostragem em Limnologia. São Carlos: Rima, 193–212.

Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. Int Ver Theor. Angew. Limnol. 9(1), 1-38. http://doi.org/10.1080/05384680.1958.11904091.

Vadeboncoeur, Y., & Steinman, A.D., 2002. Periphyton Function in Lake Ecosystems. ScientificWorldJournal 2, 1449-1468. PMid:12805932. http://doi.org/10.1100/tsw.2002.294.

van Gerven, L.P.A., de Klein, J.J.M., Gerla, D.J., Kooi, B.W., Kuiper, J.J., & Mooij, W.M., 2015. Competition for light and nutrients in layered communities of aquatic plants. Am. Nat. 186(1), 72-83. PMid:26098340. http://doi.org/10.1086/681620.

Zhang, W., Shen, H., Zhang, J., Yu, J., Xie, P., & Chen, J., 2020. Physiological differences between free-floating and periphytic filamentous algae, and specific submerged macrophytes induce proliferation of filamentous algae: a novel implication for lake restoration. Chemosphere 239, 124702. PMid:31520979. http://doi.org/10.1016/j.chemosphere.2019.124702.
 


Submetido em:
17/01/2023

Aceito em:
10/07/2024

Publicado em:
09/09/2024

66df3845a953956e2f6a3e52 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections