Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X0320
Acta Limnologica Brasiliensia
Original Article

Phosphorus and metals immobilization by periphyton in a shallow eutrophic reservoir

Imobilização de fósforo e metais pelo perifíton em um reservatório eutrófico raso

Murilo Guimarães Balle; Carla Ferragut; Lúcia Helena Gomes Coelho; Tatiane Araujo de Jesus

Downloads: 0
Views: 1160

Abstract

Abstract: : Aim:: This study evaluated and compared the changes in the Total Phosphorus (TP) and metals (Cd, Cu, Ni and Pb) contents and accumulation rates in the periphyton on different substrate types (PET and glass) in wet and dry periods in a shallow eutrophic reservoir. Thus, the potential of periphyton as a green biotechnology to remediate the eutrophication and promoting metal uptake were investigated.

Methods:: Floating substrate carriers made of wood (n = 3) containing glass and PET slides were submerged close to a sewage inflow site. Substrate exposure time was about 33 days in each period.

Results:: Periphyton TP and metal contents (Cu, Ni and Pb) were influenced by seasonality and the highest contents were found in the wet period. Periphyton metal contents were significantly different between glass or PET substrates, but no differences were detected in the TP contents.

Conclusions:: Seasonality was a determining factor for immobilization of TP and metals in periphyton. The highest potential of TP and metals immobilization by periphyton were detected in the wet period. Our results provided insights that the periphyton can contribute to remediate eutrophication and metal removal in aquatic ecosystems.

Keywords

bioremediation, eutrophication, metals, PET reuse, tropical reservoir

Resumo

Resumo: : Objetivo:: Este estudo avaliou e comparou as alterações nos teores e taxas de acumulação de fósforo total (PT) e metais (Cd, Cu, Ni e Pb) no perifíton em diferentes tipos de substratos (PET e vidro) nos períodos chuvoso e seco em um reservatório eutrófico raso. Assim, o potencial do perifíton como uma biotecnologia verde para remediar a eutrofização e promover a remoção de metais foi investigado.

Métodos:: Substratos flutuantes de madeira (n = 3) contendo lâminas de vidro e PET foram submersos próximos a uma entrada de esgoto. O tempo de exposição do substrato foi de cerca de 33 dias em cada período.

Resultados:: Os teores de PT e de metais (Cu, Ni e Pb) no perifíton foram influenciados pela sazonalidade e os maiores valores foram encontrados na estação chuvosa. O conteúdo de metais do perifíton foi significativamente diferente entre os substratos de vidro e PET, mas nenhuma diferença foi detectada com o conteúdo de PT.

Conclusões:: A sazonalidade foi um fator determinante para a imobilização de PT e metais no perifíton. O maior potencial de imobilização de PT e metais pelo perifíton foi detectado no período chuvoso. Nossos resultados forneceram boas indicações de que o perifíton pode contribuir para remediar a eutrofização e remover metais em ecossistemas aquáticos.
 

Palavras-chave

biorremediação, eutrofização, reuso de PET, reservatório tropical

References

ANDERSEN, J.M. An ignition method for determination of total phosphorus in lake sediments. Water Resources, 1976, 10, 329-331.

AMERICAN PUBLIC HEALTH ASSOCIATION – APHA. Standard methods for the examination of water and wastewater. Washington DC: APHA, 2012.

BERE, T., CHIA, M.A. and TUNDISI, J.G. Effects of Cr III and Pb on the bioaccumulation and toxicity of Cd in tropical periphyton communities: Implications of pulsed metal exposures. Environmental Pollution, 2012, 163, 184-191. http://dx.doi.org/10.1016/j.envpol.2011.12.028. PMid:22249022.

BICUDO, C.E.M., CARMO, C.F., BICUDO, D.C., HENRY, R., PIÃO, A.C.S., SANTOS, C.M. and LOPES, M.R.M. Morfologia e morfometria de três reservatórios do PEFI. In: D.C. BICUDO, M.C. FORTI and C.E.M. BICUDO eds. Parque Estadual das Fontes do Ipiranga: Unidade de Conservação ameaçada pela urbanização de São Paulo. São Paulo: Secretaria do Meio Ambiente do Estado de São Paulo, 2002, pp. 141-158.

BICUDO, D.C., FONSECA, B.M., BINI, L.M., CROSSETTI, L.O., BICUDO, C.E.M. and JESUS, T.A. Undesirable side-effects of water hyacinth control in a shallow tropical reservoir. Freshwater Biology, 2007, 52(6), 1120-1133. http://dx.doi.org/10.1111/j.1365-2427.2007.01738.x.

BOOPATHY, R. Factors limiting bioremediation technologies. Bioresource Technology, 2000, 74(1), 63-67. http://dx.doi.org/10.1016/S0960-8524(99)00144-3.

BORDUQUI, M. and FERRAGUT, C. Factors determining periphytic algae succession in a tropical hypereutrophic reservoir. Hydrobiologia, 2012, 683(1), 109-122. http://dx.doi.org/10.1007/s10750-011-0943-6.

CALAPEZ, A.R., ELIAS, C.L., ALVES, A., ALMEIDA, S.F.P., BRITO, A.G. and FEIO, M.J. Shifts in biofilms’ composition induced by flow stagnation, sewage contamination and grazing. Ecological Indicators, 2020, 111, 106006. http://dx.doi.org/10.1016/j.ecolind.2019.106006.

CAMARGO, M.S.D., ANJOS, A.R.M.D., ROSSI, C. and MALAVOLTA, E. Phosphate fertilizers and heavy metals in an Oxisol cultivated with rice. Scientia Agrícola, 2000, 57(3), 513-518. http://dx.doi.org/10.1590/S0103-90162000000300022.

CAO, Y., ZHANG, N., SUN, J. and LI, W. Responses of periphyton on non-plant substrates to different macrophytes under various nitrogen concentrations: A mesocosm study. Aquatic Botany, 2019, 154, 53-59. http://dx.doi.org/10.1016/j.aquabot.2019.01.003.

COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO – CETESB. Programa de Monitoramento [online]. São Paulo: CETESB, 2020 [viewed 14 Jan. 2020]. Available from: https://cetesb.sp.gov.br/aguas-interiores/programa-de-monitoramento/

CHEN, C.Y. Theoretical evaluation of the inhibitory effects of mercury on algal growth at various orthophosphate levels. Water Research, 1994, 28(4), 931-937. http://dx.doi.org/10.1016/0043-1354(94)90101-5.

CHEN, Z., ZHAO, D., LI, M., TU, W., LUO, X., and LIU, X. A field study on the effects of combined biomanipulation on the water quality of a eutrophic lake. Environmental Pollution, 2020, 265(A), 115091. https://doi.org/10.1016/j.envpol.2020.115091.

WDNR. WISCONSIN DEPARTMENT OF NATURAL RESOURCES. Consensus-Based Sediment Quality Guidelines. Recommendations for Use & Application. Wisconsin: Department of Natural Resources, 2003. 40 p. [viewed 14 Jan. 2020]. Available from: https://www.itrcweb.org/contseds-bioavailability/References/cbsqg_interim_final.pdf

COOKE, G.D., WELCH, E.B., PETERSON, S. and NICHOLS, S.A. Restoration and management of lakes and reservoirs. Boca Raton: CRC press, 2005, 616 p.

CROSSETTI, L.O., BICUDO, D.C., BINI, L.M., DALA-CORTE, R.B., FERRAGUT, C. and BICUDO, C.E.M. Phytoplankton species interactions and invasion by Ceratium furcoides are influenced by extreme drought and water-hyacinth removal in a shallow tropical reservoir. Hydrobiologia, 2019, 831(1), 71-85. http://dx.doi.org/10.1007/s10750-018-3607-y.

DODDS, W.K. The role periphyton in phosphorus retention in shallow freshwater aquatic systems. Journal of Phycology, 2003, 39(5), 840-849. http://dx.doi.org/10.1046/j.1529-8817.2003.02081.x.

DUONG, T.T., MORIN, S., HERLORY, O., FEURTET-MAZEL, A., COSTE, M. and BOUDOU, A. Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms. Aquatic Toxicology (Amsterdam, Netherlands), 2008, 90(1), 19-28. http://dx.doi.org/10.1016/j.aquatox.2008.07.012. PMid:18801587.

FERRAGUT, C., RODELLO, A.F. and BICUDO, C.E.M. Seasonal variability of periphyton nutrient status and biomass on artificial and natural substrates in a tropical mesotrophic reservoir. Acta Limnologica Brasiliensia, 2010, 22(4), 397-409. http://dx.doi.org/10.4322/actalb.2011.005.

FREITAS, E.V.S., NASCIMENTO, C.W.A., GOULART, D.F. and SILVA, J.P.S. Disponibilidade de cádmio e chumbo para milho em solo adubado com fertilizantes fosfatados. Revista Brasileira de Ciência do Solo, 2009, 33(6), 1899-1907. http://dx.doi.org/10.1590/S0100-06832009000600039.

GAISER, E.E., SCINTO, L.J., RICHARDS, J.H., JAYACHANDRAN, K., CHILDERS, D.L., TREXLER, J.C. and JONES, R.D. Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland. Water Research, 2004, 38(3), 507-516. http://dx.doi.org/10.1016/j.watres.2003.10.020. PMid:14723918.

GENTER, R.B. Ecotoxicology of inorganic chemical stress to algae. In: R. JAN STEVENSON, M.L. BOTHWELL and R.L. LOWE. Algal Ecology. Academic Press, 1996. http://dx.doi.org/10.1016/B978-012668450-6/50043-6.

GRANÉLI, E., CARLSSON, P. and LEGRAND, C. The role of C, N and P in dissolved and particulate organic matter as a nutrient source for phytoplankton growth, including toxic species. Aquatic Ecology, 1999, 33(1), 17-27. http://dx.doi.org/10.1023/A:1009925515059.

GRAY, B.R. and HILL, W.R. Nickel sorption by periphyton exposed to different light intensities. Journal of the North American Benthological Society, 1995, 14(2), 299-305. http://dx.doi.org/10.2307/1467781.

GUZZON, A., BOHN, A., DIOCIAIUTI, M. and ALBERTANO, P. Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water Research, 2008, 42(16), 4357-4367. http://dx.doi.org/10.1016/j.watres.2008.07.029. PMid:18774156.

HAO, B., WU, H., CAO, Y., XING, W., JEPPESEN, E. and LI, W. Comparison of periphyton communities on natural and artificial macrophytes with contrasting morphological structures. Freshwater Biology, 2017, 62(10), 1783-1793. http://dx.doi.org/10.1111/fwb.12991.

HILL, W.R. Effects of light. In: R.J. STEVENSON, M.L. BOTHWELL and R.L. LOWE, eds. Algal Ecology. New York: Academic Press, 1996, 753 p. http://dx.doi.org/10.1016/B978-012668450-6/50034-5.

HOLDING, K.L., GILL, R.A. and CARTER, J. The relationship between epilithic periphyton (biofilm) bound metals and metals bound to sediments in freshwater systems. Environmental Geochemistry and Health, 2003, 25(1), 87-93. http://dx.doi.org/10.1023/A:1021205101133. PMid:12901083.

JEPPESEN, E., SØNDERGAARD, M. and LIU, Z. Lake restoration and management in a climate change perspective: an introduction. Water (Basel), 2017, 9(2), 122. http://dx.doi.org/10.3390/w9020122.

JÖBGEN, A., PALM, A. and MELKONIAN, M. Phosphorus removal from eutrophic lakes using periphyton on submerged artificial substrata. Hydrobiologia, 2004, 528(1-3), 123-142. http://dx.doi.org/10.1007/s10750-004-2337-5.

JONES, R.I. Mixotrophy in planktonic protists: an overview. Freshwater Biology, 2000, 45(2), 219-226. http://dx.doi.org/10.1046/j.1365-2427.2000.00672.x.

KLIGERMAN, D.C. and BOUWER, E.J. Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review. Renewable & Sustainable Energy Reviews, 2015, 52(C), 1834-1846. http://dx.doi.org/10.1016/j.rser.2015.08.030.

LAMBERT, A. S., DABRIN, A., MORIN, S., GAHOU, J., FOULQUIER, A., COQUERY, M. and PESCE, S. Temperature modulates phototrophic periphyton response to chronic copper exposure. Environmental Pollution, 2016, 208, 821-829.

LIN, Z., LI, J., LUAN, Y. and DAI, W. Application of algae for heavy metal adsorption: A 20-year meta-analysis. Ecotoxicology and Environmental Safety, 2020, 190, 110089. http://dx.doi.org/10.1016/j.ecoenv.2019.110089. PMid:31896472.

LIU, Z., HU, J., ZHONG, P., ZHANG, X., NING, J., LARSEN, S.E., CHEN, D., GAO, Y., HE, H. and JEPPESEN, E. Successful restoration of a tropical shallow eutrophic lake: Strong bottom-up but weak top-down effects recorded. Water Research, 2018, 146(1), 88-97. http://dx.doi.org/10.1016/j.watres.2018.09.007. PMid:30236468.

LOCK, M.A., WALLACE, R.R., COSTERTON, J.W., VENTULLO, R.M. and CHARLTON, S.E. River epilithon: toward a structural functional model. Oikos, 1984, 42(1), 10-12. http://dx.doi.org/10.2307/3544604.

LU, H., YANG, L., SHABBIR, S. and WU, Y. The adsorption process during inorganic phosphorus removal by cultured periphyton. Environmental Science and Pollution Research International, 2014, 21(14), 8782-8791. http://dx.doi.org/10.1007/s11356-014-2813-z. PMid:24728572.

MILSTEIN, A., PERETZ, Y. and HARPAZ, S. Culture of organic tilapia to market size in periphyton based ponds with reduced feed inputs. Aquaculture Research, 2009, 40(1), 55-59. http://dx.doi.org/10.1111/j.1365-2109.2008.02062.x.

MORASHASHI, A.C., JESUS, T.A., ROSA, D.S., HARADA, J. and BICUDO, D.C. Avaliação e comparação do acúmulo de fósforo por biofilme formado sobre lâminas de vidro e de filme polimérico biodegradável (Ecovio® modificado). Revista Brasileira de Ciência. Tecnologia e Inovação, 2019, 4(2), 131-145. http://dx.doi.org/10.18554/rbcti.v4i2.3696.

OLIVEIRA, D.E., FERRAGUT, C. and BICUDO, D.C. Relationships between environmental factors, periphyton biomass and nutrient content in Garças Reservoir, a hypereutrophic tropical reservoir in southeastern Brazil. Lakes and Reservoirs, 2010, 15(2), 129-137. http://dx.doi.org/10.1111/j.1440-1770.2010.00428.x.

PAULSSON, M., MÅNSSON, V. and BLANCK, H. Effects of zinc on the phosphorus availability to periphyton communities from the river Göta Älv. Aquatic Toxicology (Amsterdam, Netherlands), 2002, 56(2), 103-113. http://dx.doi.org/10.1016/S0166-445X(01)00189-8. PMid:11755699.

PEREIRA, R.C.C., MACHADO, A.H. and SILVA, G.G. (Re) Conhecendo o PET. Química Nova na Escola, 2002, 15, 3-5. [viewed 14 Jan. 2020]. Available from: http://qnesc.sbq.org.br/online/qnesc15/v15a01.pdf

ROONEY, R.C., DAVY, C., GILBERT, J., PROSSER, R., ROBICHAUD, C. and SHEEDY, C. Periphyton bioconcentrates pesticides downstream of catchment dominated by agricultural land use. The Science of the Total Environment, 2020, 702(1), 131172. http://dx.doi.org/10.1016/j.scitotenv.2019.134472. PMid:31731130.

ROESELERS, G., VAN LOOSDRECHT, M.C.M. and MUYZER, G. Phototrophic biofilms and their potential applications. Journal of Applied Phycology, 2008, 20(3), 227-235. http://dx.doi.org/10.1007/s10811-007-9223-2. PMid:19396356.

SCHINDLER, D.W., HECKY, R.E., FINDLAY, D.L., STAINTON, M.P., PARKER, B.R., PATERSON, M.J., BEATY, K.G.M., LYNG, M. and KASIAN, S.E.M. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of the United States of America, 2009, 105(32), 11254-11258. http://dx.doi.org/10.1073/pnas.0805108105. PMid:18667696.

SCHINDLER, D.W. The dilemma of controlling cultural eutrophication of lakes. Proceedings. Biological Sciences, 2012, 279(1746), 4322-4333. http://dx.doi.org/10.1098/rspb.2012.1032. PMid:22915669.

SERRA, A., GUASCH, H., ADMIRAAL, W., VAN DER GEEST, H.G. and VAN BEUSEKOM, S.A.M. Influence of phosphorus on copper sensitivity of fluvial periphyton: the role of chemical, physiological and community-related factors. Ecotoxicology (London, England), 2010, 19(4), 770-780. http://dx.doi.org/10.1007/s10646-009-0454-7. PMid:20024616.

SIQUEIRA, N.S. and RODRIGUES, L. Biomassa perifítica em tanques-rede de criação de tilápia do Nilo Oreochromis niloticus (Linneau, 1758). Boletim do Instituto de Pesca, 2009, 35(2), 181-190. [viewed 14 Jan. 2020]. Available from: https://www.pesca.agricultura.sp.gov.br/35_2_181-190.pdf

SØNDERGAARD, M., BJERRING, R. and JEPPESEN, E. Persistent internal phosphorus loading during summer in shallow eutrophic lakes. Hydrobiologia, 2013, 710(1), 95-107. http://dx.doi.org/10.1007/s10750-012-1091-3.

STEVENSON, R.J. and STOERMER, E.F. Luxury consumption of phosphorus by five Cladophora epiphytes in Lake Huron. Transactions of the American Microscopical Society, 1982, 101(2), 151-161. http://dx.doi.org/10.2307/3225768. PMid:7135703.

TRBOJEVIĆ, I., JOVANOVIĆ, J., KOSTIĆ, D., POPOVIĆ, S., KRIZMANIĆ, J., KARADŽIĆ, V. and SIMIĆ, G.S. Structure and succession of periphyton in an urban reservoir: artificial substrate specificity. Oceanological and Hydrobiological Studies, 2017, 46(4), 379-392. http://dx.doi.org/10.1515/ohs-2017-0038.

TRBOJEVIĆ, I., JOVANOVIĆ, J., KOSTIĆ, D., POPOVIĆ, S., PREDOJEVIĆ, D., KARADŽIĆ, V. and SIMIĆ, G.S. Periphyton Developed on Artificial Substrates: Effect of Substrate Type and Incubation Depth. Russian Journal of Ecology, 2018, 49(2), 135-142. http://dx.doi.org/10.1134/S1067413618020145.

TU, L., JAROSCH, K.A., SCHNEIDER, T. and GROSJEAN, M. Phosphorus fractions in sediments and their relevance for historical lake eutrophication in the Ponte Tresa basin (Lake Lugano, Switzerland) since 1959. The Science of the Total Environment, 2019, 685, 806-817. http://dx.doi.org/10.1016/j.scitotenv.2019.06.243. PMid:31238284.

VADEBONCOEUR, Y., KALFF, J., CHRISTOFFERSEN, K. and JEPPESEN, E. Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes. Journal of the North American Benthological Society, 2006, 25(2), 379-392. http://dx.doi.org/10.1899/0887-3593(2006)25[379:SAADOV]2.0.CO;2.

VALDERRAMA, G.C. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry, 1981, 10(2), 109-112. http://dx.doi.org/10.1016/0304-4203(81)90027-X.

VAN OOSTERHOUT, F., WAAJEN, G., YASSERI, S., MARINHO, M.M., NOYMA, N.P., MUCCI, M., DOUGLAS, G. and LURLING, M. Lanthanum in water, sediment, macrophytes and chironomid larvae following application of Lanthanum modified bentonite to lake Rauwbraken (The Netherlands). The Science of the Total Environment, 2020, 706, 135188. http://dx.doi.org/10.1016/j.scitotenv.2019.135188. PMid:31855642.

VYMAZAL, J. Short-term uptake of heavy metals by periphyton algae. Hydrobiologia, 1984, 119(3), 171-179. http://dx.doi.org/10.1007/BF00015208.

WAGNER, M., SCHERER, C., ALVAREZ-MUÑOZ, D., BRENNHOLT, N., BOURRAIN, X., BUCHINGER, S. and RODRIGUEZ-MOZAZ, S. Microplastics in freshwater ecosystems: what we know and what we need to know. Environmental Sciences Europe, 2014, 26(1), 12. http://dx.doi.org/10.1186/s12302-014-0012-7. PMid:28936382.

WANG, S., LI, J., ZHANG, B., SPYRAKOS, E., TYLER, A.N., SHEN, Q., ZHANG, F., KUSTER, T., LEHMANN, M.K., WU, Y. and PENG, D. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sensing of Environment, 2018, 217, 444-460. http://dx.doi.org/10.1016/j.rse.2018.08.026.

WU, N., DONG, X., LIU, Y., WANG, C. and PEDESERN, A.B. Using river microalgae as indicators for freshwater biomonitoring: Review of published research and future directions. Ecological Indicators, 2017, 81, 124-131. http://dx.doi.org/10.1016/j.ecolind.2017.05.066.

WU, Y., ZHANG, S., ZHAO, H. and YANG, L. Environmentally benign periphyton bioreactors for controlling cyanobacterial growth. Bioresource Technology, 2010, 101(24), 9681-9687. http://dx.doi.org/10.1016/j.biortech.2010.07.063. PMid:20702088.

YAMADA-FERRAZ, T.M., SUEITT, A.P.E., OLIVEIRA, A.F., BOTTA, C.M.R., FADINI, P.S., NASCIMENTO, M.R.L., FARIA, B.M. and MOZETO, A.A. Assessment of Phoslock® application in a tropical eutrophic reservoir: An integrated evaluation from laboratory to field experiments. Environmental Technology & Inovation, 2015, 4, 194-205. http://dx.doi.org/10.1016/j.eti.2015.07.002.

ZENG, J. and WANG, W.X. Temperature and irradiance influences on cadmium and zinc uptake and toxicity in a freshwater cyanobacterium, Microcystis aeruginosa. Journal of Hazardous Materials, 2011, 190(1-3), 922-929. http://dx.doi.org/10.1016/j.jhazmat.2011.04.009. PMid:21536379.

ZHANG, N., LI, H., JEPPESEN, E. and LI, W. Influence of substrate type on periphyton biomass and nutrient state at contrasting high nutrient levels in a subtropical shallow lake. Hydrobiologia, 2013, 710(1), 129-141. http://dx.doi.org/10.1007/s10750-012-1287-6.

ZHAO, Y., YANG, Z., XIA, X. and WANG, F. A shallow lake remediation regime with Phragmites australis: Incorporating nutrient removal and water evapotranspiration. Water Research, 2012, 46(17), 5635-5644. http://dx.doi.org/10.1016/j.watres.2012.07.053. PMid:22921585.

ZHOU, A., TANG, H. and WANG, D. Phosphorus adsorption on natural sediments: modeling and effects of pH and sediment composition. Water Research, 2005, 39(7), 1245-1254. http://dx.doi.org/10.1016/j.watres.2005.01.026. PMid:15862324.
 


Publication date:
06/02/2021

60b78236a95395541f40d003 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections