Acta Limnologica Brasiliensia
https://actalb.org/article/doi/10.1590/S2179-975X0223
Acta Limnologica Brasiliensia
Review Article

Impacts of extreme precipitation events in water quality: a scientometric analysis in global scale

Impactos de eventos extremos de precipitação na qualidade da água: uma análise cienciométrica em escala global

Caio Vitor Matos Moreira; Mariana Rodrigues Amaral da Costa; Vanessa Becker

Downloads: 1
Views: 1125

Abstract

Aim: This study aims to evaluate temporal patterns of extreme events related to precipitation on a global scale, identifying their main impacts and if there are climatic zones more susceptible to these phenomena using a scientometric approach.

Methods: A systematic review was conducted on scientific papers published between 1991 and July 2020, obtained from the Scopus and Thomson ISI Web of Science databases. Keywords related to precipitation extreme events and their effects on planktonic communities and freshwater ecosystems' water quality were used in the search.

Results: The analysis revealed a significant increase in publications, particularly from 2014 onwards, following the release of reports by the Intergovernmental Panel on Climate Change (IPCC) and the American Meteorological Society (AMS). These reports highlighted the increasing frequency of these climatic events and their potential for causing damage to humanity. In this review, we focused on extreme weather events related to precipitation such as droughts, rains, and floods. These events, due to their sudden volumetric changes, lead to immediate physical and chemical alterations in the water column. The main impacts of these extreme events on aquatic ecosystems include increased nutrient concentrations (mainly phosphorus and nitrogen), contamination by micropollutants, cyanobacteria blooms, and loss of biodiversity.

Conclusions: The scientometric analysis indicates that extreme weather events associated with precipitation have a detrimental effect on water quality and aquatic biodiversity, exacerbating the eutrophication process in freshwater systems.

Keywords

climate change, drought, storms, rainfall, eutrophication

Resumo

Objetivo: Encontrar padrões temporais dos eventos extremos relacionados a precipitação em escala global, assim identificar os principais impactos e se há zonas climáticas suscetíveis a esses fenômenos em uma abordagem cienciométrica.

Métodos: Realizamos uma revisão sistemática investigando trabalhos científicos publicados entre 1991 até julho de 2020 nas bases de dados Scopus e Thomson ISI Web of Science. Buscamos por palavras-chave relacionadas a eventos extremos de precipitação e efeitos sobre a comunidade planctônica e a qualidade da água de ecossistemas aquáticos continentais.

Resultados: Observamos um aumento expressivo de publicações, especialmente a partir de 2014 após a publicação de relatórios do Painel Intergovernamental sobre Mudanças Climáticas (IPCC) e Sociedade Americana de Meteorologia (AMS), apontando a tendência de crescimento de frequência desses eventos climáticos e o potencial de danos a humanidade. Nesta revisão escolhemos os eventos climáticos extremos relacionados à precipitação (secas, chuvas e inundações), que promovem uma variação volumétrica abrupta que imediatamente causa alterações físicas e químicas na coluna d'água. Como principais impactos desses eventos extremos nos ecossistemas aquáticos encontramos aumento da concentração de nutrientes (principalmente fósforo e nitrogênio), contaminação por micropoluentes, florações de cianobactérias e perda de biodiversidade.

Conclusões: A análise cienciométrica revelou que eventos climáticos extremos relacionados à precipitação geram impactos negativos na qualidade da água e na biodiversidade aquática, intensificando o processo de eutrofização em sistemas aquáticos continentais.
 

Palavras-chave

mudanças climáticas, secas, tempestades, chuvas, eutrofização

References

Adame, M.F., Roberts, M.E., Hamilton, D.P., Ndehedehe, C.E., Reis, V., Lu, J., Griffiths, M., Curwen, G., & Ronan, M., 2019. Tropical coastal wetlands ameliorate nitrogen export during floods. Front. Mar. Sci. 6, 671. http://dx.doi.org/10.3389/fmars.2019.00671.

Barbosa, J.E.L., Medeiros, E.S.F., Brasil, J., Cordeiro, R.S., Crispim, M.C.B., & Silva, G.H.G., 2012. Aquatic systems in semi-arid Brazil: limnology and management. Acta Limnol. Bras. 24(1), 103-118. http://dx.doi.org/10.1590/S2179-975X2012005000030.

Camuffo, D., Becherini, F., & Della Valle, A., 2020. Relationship between selected percentiles and return periods of extreme events. Acta Geophys. 68(4), 1201-1211. http://dx.doi.org/10.1007/s11600-020-00452-x.

Cortez, F., Monicelli, F., Cavalcante, H., & Becker, V., 2022. Effects of prolonged drought on water quality after drying of a semiarid tropical reservoir, Brazil. Limnologica 93, 125959. http://dx.doi.org/10.1016/j.limno.2022.125959.

Costa, J.A., Souza, J.P., Teixeira, A.P., Nabout, J.C., & Carneiro, F.M., 2018. Eutrophication in aquatic ecosystems: a scientometric study. Acta Limnol. Bras. 30:e2. http://dx.doi.org/10.1590/s2179-975x3016.

Costa, M.R.A., Menezes, R.F., Sarmento, H., Attayde, J.L., Sternberg, L.S.L., & Becker, V., 2019. Extreme drought favors potential mixotrophic organisms in tropical semi-arid reservoirs. Hydrobiologia 831(1), 43-54. http://dx.doi.org/10.1007/s10750-018-3583-2.

Domis, L.N.S., Elser, J.J., Gsell, A.S., Huszar, V.L.M., Ibelings, B.W., Jeppesen, E., Kosten, S., Mooij, W.M., Roland, F., Sommer, U., van Donk, E., Winder, M., & Lürling, M., 2013. Plankton dynamics under different climate conditions in tropical freshwater systems (a reply to the comment by Sarmento, Amado & Descy). Freshw. Biol. 58(10), 2211-2213. http://dx.doi.org/10.1111/fwb.12203.

Guo, C., Zhu, G., Paerl, H.W., Zhu, M., Yu, L., Zhang, Y., Liu, M., Zhang, Y., & Qin, B., 2018. Extreme weather event may induce Microcystis blooms in the Qiantang River, Southeast China. Environ. Sci. Pollut. Res. Int. 25(22), 22273-22284. PMid:29806052. http://dx.doi.org/10.1007/s11356-018-2216-7.

Havens, K., Paerl, H., Phlips, E., Zhu, M., Beaver, J., & Srifa, A., 2016. Extreme weather events and climate variability provide a lens to how shallow lakes may respond to climate change. Water 8(6), 229. http://dx.doi.org/10.3390/w8060229.

Hrdinka, T., Novický, O., Hanslík, E., & Rieder, M., 2012. Possible impacts of floods and droughts on water quality. J. Hydro-Environ Res. 6(2), 145-150. http://dx.doi.org/10.1016/j.jher.2012.01.008.

Intergovernmental Panel on Climate Change - IPCC, 2012. Managing the risks of extreme events and disasters to advance climate change adaptation. Special report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

Intergovernmental Panel on Climate Change - IPCC, 2022. Climate change 2022: impacts, adaptation, and vulnerability. Cambridge: Cambridge University Press.

Jalil, A., Li, Y., Zhang, K., Gao, X., Wang, W., Khan, H.O.S., Pan, B., Ali, S., & Acharya, K., 2019. Wind-induced hydrodynamic changes impact on sediment resuspension for large, shallow Lake Taihu, China. Int. J. Sediment Res. 34(3), 205-215. http://dx.doi.org/10.1016/j.ijsrc.2018.11.003.

Ji, G., & Havens, K., 2019. Periods of extreme shallow depth hinder but do not stop long-term improvements of water quality in Lake Apopka, Florida (USA). Water 11(3), 538. http://dx.doi.org/10.3390/w11030538.

Lima, C.O., & Bonetti, J., 2020. Bibliometric analysis of the scientific production on coastal communities’ social vulnerability to climate change and to the impact of extreme events. Nat. Hazards 102(3), 1589-1610. http://dx.doi.org/10.1007/s11069-020-03974-1.

Lisboa, M.S., Schneider, R.L., Sullivan, P.J., & Walter, M.T., 2020. Drought and post-drought rain effect on stream phosphorus and other nutrient losses in the Northeastern USA. J. Hydrol. Reg. Stud. 28, 100672-100690. http://dx.doi.org/10.1016/j.ejrh.2020.100672.

Luettich Junior, R.A., Harleman, D.R.F., & Somlyódy, L., 1990. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnol. Oceanogr. 35(5), 1050-1067. http://dx.doi.org/10.4319/lo.1990.35.5.1050.

Marengo, J.A., Alves, L.M., Alvala, R.C.S., Cunha, A.P., Brito, S., & Moraes, O.L.L., 2018. Climatic characteristics of the 2010-2016 drought in the semiarid Northeast Brazil region. An. Acad. Bras. Cienc. 90(2, Suppl. 1), 1973-1985. PMid:28813107. http://dx.doi.org/10.1590/0001-3765201720170206.

Marengo, J.A., Jones, R., Alves, L.M., & Valverde, M.C., 2009. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int. J. Climatol. 29(15), 2241-2255. http://dx.doi.org/10.1002/joc.1863.

Mehmood, H., 2019. Bibliometrics of water research: a global snapshot (Vol. 6). Hamilton: United Nations University Institute for Water, Environment and Health. http://dx.doi.org/10.53328/EYBT8774.

Mosley, L.M., 2015. Drought impacts on the water quality of freshwater systems, review and integration. Earth Sci. Rev. 140, 203-214. http://dx.doi.org/10.1016/j.earscirev.2014.11.010.

Nobre, R.L.G., Caliman, A., Cabral, C.R., Araújo, F.C., Guérin, J., Dantas, F.C.C., Quesado, L.B., Venticinque, E.M., Guariento, R.D., Amado, A.M., Kelly, P., Vanni, M.J., & Carneiro, L.S., 2020. Precipitation, landscape properties and land use interactively affect water quality of tropical freshwaters. Sci. Total Environ. 716, 137044. PMid:32059302. http://dx.doi.org/10.1016/j.scitotenv.2020.137044.

Outram, F.N., Lloyd, C.E.M., Jonczyk, J., Benskin, C.M.H., Grant, F., Perks, M.T., Deasy, C., Burke, S.P., Collins, A.L., Freer, J., Haygarth, P.M., Hiscock, K.M., Johnes, P.J., & Lovett, A.L., 2014. High-frequency monitoring of nitrogen and phosphorus response in three rural catchments to the end of the 2011-2012 drought in England. Hydrol. Earth Syst. Sci. 18(9), 3429-3448. http://dx.doi.org/10.5194/hess-18-3429-2014.

Peterson, T.C., Stott, P.A., & Herring, S., 2012. Explaining extreme events of 2011 from a climate perspective: using a variety of methodologies, six extreme events of the previous year are explained from a climate perspective. Bull. Am. Meteorol. Soc. 93(7), 1041-1067. http://dx.doi.org/10.1175/BAMS-D-12-00021.1.

Pham, T.-L., Tran, T.H.Y., Shimizu, K., Li, Q., & Utsumi, M., 2021. Toxic cyanobacteria and microcystin dynamics in a tropical reservoir: assessing the influence of environmental variables. Environ. Sci. Pollut. Res. Int. 28, 63544-63557. PMid:32948940. http://dx.doi.org/10.1007/s11356-020-10826-9.

Qiu, X., Huang, T., Zeng, M., Shi, J., Cao, Z., & Zhou, S., 2017. Abnormal increase of Mn and TP concentrations in a temperate reservoir during fall overturn due to drought-induced drawdown. Sci. Total Environ. 575, 996-1004. PMid:27720258. http://dx.doi.org/10.1016/j.scitotenv.2016.09.170.

Rocha Junior, C.A.N., Costa, M.R.A., Menezes, R.F., Attayde, J.L., & Becker, V., 2018. Water volume reduction increases eutrophication risk in tropical semi-arid reservoirs. Acta Limnol. Bras. 30, e106. http://dx.doi.org/10.1590/s2179-975x2117.

Santos, D.F., Silva, J.M., & Becker, V., 2021. Increasy eutrophication symptoms during a prolonged drought event in tropical semi-arid reservoirs, Brazil. Rev. Bras. Recur. Hídr. 26, e39. http://dx.doi.org/10.1590/2318-0331.262120210097.

Sharip, Z., Yusoff, F.M., & Jamin, A., 2019. Seasonal water quality and trophic status of shallow lentic waters and their association with water levels. Int. J. Environ. Sci. Technol. 16(8), 4851-4862. http://dx.doi.org/10.1007/s13762-018-2172-2.

Stockwell, J.D., Doubek, J.P., Adrian, R., Anneville, O., Carey, C.C., Carvalho, L., Domis, L.N.S., Dur, G., Frassl, M.A., Grossart, H.-P., Ibelings, B.W., Lajeunesse, M.J., Lewandowska, A.M., Llames, M.E., Matsuzaki, S.-I.S., Nodine, E.R., Nõges, P., Patil, V.P., Pomati, F., Rinke, K., Rudstam, L.G., Rusak, J.A., Salmaso, N., Seltmann, C.T., Straile, D., Thackeray, S.J., Thiery, W., Urrutia-Cordero, P., Venail, P., Verburg, P., Woolway, R.I., Zohary, T., Andersen, M.R., Bhattacharya, R., Hejzlar, J., Janatian, N., Kpodonu, A.T.N.K., Williamson, T.J., & Wilson, H.L., 2020. Storm impacts on phytoplankton community dynamics in lakes. Glob. Change Biol. 26(5), 2756-2784. PMid:32133744. http://dx.doi.org/10.1111/gcb.15033.

Tang, C., Li, Y., He, C., & Acharya, K., 2020. Dynamic behavior of sediment resuspension and nutrients release in the shallow and wind-exposed Meiliang Bay of Lake Taihu. Sci. Total Environ. 708, 135131. PMid:31787278. http://dx.doi.org/10.1016/j.scitotenv.2019.135131.

Woodward, G., Perkins, D.M., & Brown, L.E., 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365(1549), 2093-2106. PMid:20513717. http://dx.doi.org/10.1098/rstb.2010.0055.

World Meteorological Organization - WMO, 2016. Guidelines on the defnition and monitoring of extreme weather and climate events. Geneva: WMO.

Yoshikawa, S., Cho, J., Yamada, H.G., Hanasaki, N., & Kanae, S., 2014. An assessment of global net irrigation water requirements from various water supply sources to sustain irrigation: rivers and reservoirs (1960-2050). Hydrol. Earth Syst. Sci. 18(10), 4289-4310. http://dx.doi.org/10.5194/hess-18-4289-2014.

Zitt, M., & Bassecoulard, E., 2008. Challenges for scientometric indicators: data demining, knowledge-flow measurements and diversity issues. Ethics Sci. Environ. Polit. 8, 49-60. http://dx.doi.org/10.3354/esep00092.

Zoboli, O., Viglione, A., Rechberger, H., & Zessner, M., 2015. Impact of reduced anthropogenic emissions and century flood on the phosphorus stock, concentrations and loads in the Upper Danube. Sci. Total Environ. 518-519, 117. PMid:25747371. http://dx.doi.org/10.1016/j.scitotenv.2015.02.087.
 


Submitted date:
01/10/2023

Accepted date:
06/21/2023

Publication date:
07/21/2023

64ba8c6aa9539531f95a3442 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections