Acta Limnologica Brasiliensia
https://actalb.org/journal/alb/article/doi/10.1590/S2179-975X1717
Acta Limnologica Brasiliensia
Original Article

Application of multivariate methods and geoestatistics to model the relationship between CO2 emissions and physicochemical variables in the Hidrosogamoso reservoir, Colombia

Aplicação de métodos multivariados e geoestatísticos para modelar a relação entre as emissões de CO2 e as variáveis fisicoquímicas no reservatório de Hidrosogamoso, Colômbia

Ingry Natalia Gómez Miranda; Fabio Vélez Macías; Gustavo Antonio Peñuela Mesa

Downloads: 1
Views: 1661

Abstract

Abstract: : Aim: This article deals with the estimation of a model for CO2 emissions in the Hidrosogamoso reservoir based on the organic matter level and water quality. This is in order to determine the impact of the creation of a tropical reservoir on the generation of greenhouse gases (GHG), and to establish the water quality and emissions dynamics. We hypothesize that the spatial variability of emissions is determined by water quality and carbon cycling in water.

Methods: Multivariate techniques were applied to determine the relationships between CO2 and certain physicochemical variables measured in the reservoir between February and May 2015, taking samples in 10 stations and measuring 14 variables (water quality parameters and CO2). Factor, cluster, discriminant and regression analysis, as well as the geostatistical technique kriging, were used.

Results: We observed that all variables except dissolved organic carbon have strong linear relationships. Nitrate, total-P, total solids and total suspended solids are related due to the presence of nutrients in the water; chlorophyll a and biodegradable dissolved organic carbon due to organic carbon; and alkalinity and dissolved solids due to dissolved minerals. The sampling stations can be classified into two homogeneous groups. The first consists of the stations peripheral to the reservoir and the second of stations inside the reservoir. This difference is due mainly to the behavior of chlorophyll a and biodegradable dissolved organic carbon, and these two variables are also the best predictors for CO2, with a maximum adjustment of 70%.

Conclusions: Our main conclusion is that the production of CO2 is due to decomposition of flooded organic carbon, depends on the soils flooded and the tributary water quality, and that the production of this gas will, based on the literature, continue for 5 to 10 years depending on the nature of the forest flooded.

Keywords

CO2 emissions, hydropower, organic carbon, tropical reservoir, water quality

Resumo

Resumo: : Objetivo: Este artigo trata de estimar um modelo de emissões de CO2 no reservatório Hidrosogamoso a partir da matéria orgânica e da qualidade da água, para determinar o impacto da criação de um reservatório tropical na geração de gases de efeito estufa (GEE) e estabelecer a dinâmica da qualidade da água e das emissões. Nossa hipótese é que a variabilidade espacial das emissões é forçada pela qualidade da água e pelo ciclo do carbono na água.

Métodos: Técnicas multivariadas foram aplicadas para determinar as relações entre o CO2 e determinadas variáveis físico-químicas medidas no reservatório entre fevereiro e maio de 2015, tomando amostras em 10 estações e medindo 14 variáveis (parâmetros de qualidade da água e CO2). Foram usadas as técnicas estatísticas de Fator, Cluster, Análise Discriminante e Regressiva, bem como a técnica geoestatística de krigagem.

Resultados: Observamos que todas as variáveis, exceto o carbono orgânico dissolvido, possuem fortes relações lineares. Nitrato, P-total, sólidos totais e sólidos suspensos totais estão relacionados devido à presença de nutrientes na água; clorofila a e carbono orgânico dissolvido biodegradável devido ao carbono orgânico; e alcalinidade e sólidos dissolvidos devido a minerais dissolvidos. As estações de amostragem podem ser classificadas em dois grupos homogêneos. O primeiro consiste nas estações periféricas do reservatório e a segunda das estações no interior do reservatório. Essa diferença é devido principalmente ao comportamento da clorofila e do carbono orgânico dissolvido biodegradável, e essas duas variáveis também são os melhores preditores para o CO2, com um ajuste máximo de 70%.

Conclusões: Nossa principal conclusão é que a produção de CO2 é devido à decomposição do carbono orgânico inundado, aos solos inundados e à qualidade da água dos afluentes, e que a produção deste gás continuará, de acordo com a literatura, por 5 ou 10 anos, dependendo da natureza da floresta inundada.
 

Palavras-chave

emissões de CO2, hidrelétrica, carbono orgânico, reservatório tropical, qualidade da água

References

ABRIL, G., GUÉRIN, F., RICHARD, S., DELMAS, R., GALY-LACAUX, C., GOSSE, P., TREMBLAY, A., VARFALVY, L., DOS SANTOS, M. and MATVIENKO, B. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Global Biogeochemical Cycles, 2005, 19(4), 1-16. http://dx.doi.org/10.1029/2005GB002457.

AMERICAN PUBLIC HEALTH ASSOCIATION – APHA. Standard Methods for the examination of water and wastewaters. 22th ed. Washington: American Public Health Association, 2012.

BARROS, N., COLE, J.J., TRANVIK, L.J., PRAIRIE, Y.T., BASTVIKEN, D., HUSZAR, V.L.M., DEL GIORGIO, P. and ROLAND, F. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience, 2011, 4(9), 593-596. http://dx.doi.org/10.1038/ngeo1211.

BELKHIRI, L. and NARANY, T. Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. Water Resources Management, 2015, 159(3-4), 1-17. http://dx.doi.org/10.1007/s11269-015-0929-7.

BIERMAN, P., LEWIS, M., OSTENDORF, B. and TANNER, J. A review of methods for analysing spatial and temporal patterns in coastal water quality. Ecological Indicators, 2011, 11(1), 103-114. http://dx.doi.org/10.1016/j.ecolind.2009.11.001.

CHIHI, H., BEDIR, M. and BELAYOUNI, H. Variogram identification aided by a structural framework for improved geometric modeling of faulted reservoirs: Jeffara Basin, Southeastern Tunisia. Natural Resources Research, 2013, 22(2), 139-161. http://dx.doi.org/10.1007/s11053-013-9201-0.

COLETTI, C., TESTEZLAF, R., RIBEIRO, T.A., SOUZA, R.T. and PEREIRA, D.D.A. Water quality index using multivariate factorial analysis. Revista Brasileira de Engenharia Agrícola e Ambiental, 2010, 14(5), 517-522. http://dx.doi.org/10.1590/S1415-43662010000500009.

DE FARIA, F.A.M., JARAMILLO, P., SAWAKUCHI, H.O., RICHEY, J.E. and BARROS, N. Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs. Environmental Research Letters, 2010, 10, 1-13.

DELMAS, R., GALY-LACAUX, C. and RICHARD, S. Emissions of greenhouse gases from the tropical hydroelectric reservoir of Petit Saut (French Guiana) compared with emissions from thermal alternatives. Global Biogeochemical Cycles, 2001, 15(4), 993-1003. http://dx.doi.org/10.1029/2000GB001330.

DEMARTY, M. and BASTIEN, J. GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: Review of 20 years of CH4 emission measurements. Energy Policy, 2011, 39(7), 4197-4206. http://dx.doi.org/10.1016/j.enpol.2011.04.033.

DIEM, T., KOCH, S., SCHWARZENBACH, S., WEHRLI, B. and SCHUBERT, C.J. Greenhouse gas emissions (CO2, CH4, and N2O) from several perialpine and alpine hydropower reservoirs by diffusion and loss in turbines. Aquatic Sciences, 2012, 74(3), 619-635. http://dx.doi.org/10.1007/s00027-012-0256-5.

DUCHEMIN, E., LUCOTTE, M., CANUEL, R. and CHAMBERLAND, A. Production of the greenhouse gases CH4 and CO2, by hydroelectric reservoirs of the boreal region. Global Biogeochemical Cycles, 1995, 9(4), 529-540. http://dx.doi.org/10.1029/95GB02202.

FEARNSIDE, P.M. Hydroelectric dams in the Brazilian Amazon as Sources of “Greenhouse” Gases. Environmental Conservation, 1995, 22(1), 7-19. http://dx.doi.org/10.1017/S0376892900034020.

FEARNSIDE, P.M. Greenhouse gas emissions from hydroelectric dams: controversies provide a springboard for rethinking a supposedly “clean” energy source. Climatic Change, 2004, 66(1-2), 1-8. http://dx.doi.org/10.1023/B:CLIM.0000043174.02841.23.

FEARNSIDE, P.M. Análisis de los principales proyectos hidro-energéticos en la región Amazónica. Lima: Derecho, Ambiente y Recursos Naturales, 2013.

FEARNSIDE, P.M. Hidrelétricas na Amazônia: impactos ambientais e sociais na tomada de decisões sobre grandes obras. Manaos: Instituto Nacional de Pesquisas da Amazônia, 2015a.

FEARNSIDE, P.M. Tropical hydropower in the clean development mechanism: Brazil’s Santo Antônio Dam as an example of the need for change. Climatic Change, 2015b, 131(4), 575-589. http://dx.doi.org/10.1007/s10584-015-1393-3.

FEARNSIDE, P.M. Greenhouse gas emissions from Brazil’s Amazonian hydroelectric dams. Environmental Research Letters, 2016a, 11(1), 1-3. http://dx.doi.org/10.1088/1748-9326/11/1/011002.

FEARNSIDE, P.M. Greenhouse gas emissions from hydroelectric dams in tropical forest. In: J. LEHR and J. KEELEY, eds. Alternative energy and shale gas encyclopedia. New York: John Wiley and Sons, 2016b, pp. 428-438. http://dx.doi.org/10.1002/9781119066354.ch42.

GALEOTTI, M. and LANZA, A. Richer and cleaner? A study on carbon dioxide emissions in developing countries. Energy Policy, 1999, 27(10), 565-573. http://dx.doi.org/10.1016/S0301-4215(99)00047-6.

GALY-LACAUX, C., DELMAS, R., KOUADIO, G., RICHARD, S. and GOSSE, P. Long-term greenhouse gas emissions from hydroelectric reservoirs in tropical forest regions. Global Biogeochemical Cycles, 1999, 13(2), 503-517. http://dx.doi.org/10.1029/1998GB900015.

GIRALDO, H.R. Introducción a la geoestadística: Teoría y Aplicación. Bogotá: Universidad Nacional de Colombia, 2002.

GRUPO DE INVESTIGACIÓN SOBRE DESARROLLO REGIONAL Y ORDENAMIENTO TERRITORIAL – GIDROT, UNIVERSIDAD INDUSTRIAL DE SANTANDER – UIS and SECRETARÍA DE PLANEACIÓN DEPARTAMENTO DE SANTANDER – SPDS. Santander 2030: Diagnóstico dimensión biofísico ambiental territorial de Santander. Bucaramanga: Universidad Industrial de Santander, 2011.

GUÉRIN, F., GWENAËL, A., RICHARD, S., BURBAN, B., REYNOUARD, C., SEYLER, P. and DELMAS, R. Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers. Geophysical Research Letters, 2006, 33(21), 1-6. http://dx.doi.org/10.1029/2006GL027929.

GUNKEL, G. Hydropower – A green energy? Tropical reservoirs and greenhouse gas emissions. CLEAN – Soil, Air, Water, 2009, 37(9), 726-734.

HAIR, J.F., BLACK, W.C. and BABIN, B.J. Multivariate data analysis. 7th ed. United States: Prentice Hall, 2010.

HAIRSTON, N.G. and FUSSMANN, G.F. Lake ecosystems. New York: John Wiley and Sons, Ltd., 2001.

HUTTUNEN, J.T., VÄISÄNEN, T.S., HELLSTEN, S.K., HEIKKINEN, M., NYKÄNEN, H., JUNGNER, H., NISKANEN, A., VIRTANEN, M.O., LINDQVIST, O.V., NENONEN, O.S. and MARTIKAINEN, P.J. Fluxes of CH4, CO2, and N2O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland. Global Biogeochemical Cycles, 2002, 16(1), 1-17. http://dx.doi.org/10.1029/2000GB001316.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE – IPCC. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, 2001.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE – IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel of Climatic Change. Geneva, Switzerland: Intergovernmental Panel on Climate Change, 2007.

INTERNATIONAL HIDROPOWER ASSOCIATION – IHA. Hydropower Status Report 2015. London: International Hidropower Association, 2015.

INTERNATIONAL HIDROPOWER ASSOCIATION – IHA. Hydropower Status Report 2016. London: International Hidropower Association, 2016.

JOHNSON, D.E. Applied multivariate methods for data analysts. United States: Duxbury Press, 1998.

JOHNSON, R.A. and WICHERN, D.W. Applied multivariate statistical analysis. United States: Pearson Prentice Hall, 2007.

KELLY, C.A., RUDD, J.W.M., BODALY, R.A., ROULET, N.P., ST. LOUIS, V.L., HEYES, A., MOORE, T.R., SCHIFF, S., ARAVENA, R., SCOTT, K.J., DYCK, B., HARRIS, R., WARNER, B. and EDWARDS, G. Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. Environmental Science & Technology, 1997, 31(5), 1334-1344. http://dx.doi.org/10.1021/es9604931.

KEMENES, A., FORSBERG, B.R. and MELACK, J.M. CO2 emissions from a tropical hydroelectric reservoir (Balbina, Brasil). Journal of Geophysical Research, 2011, 116(G3), 1-11. http://dx.doi.org/10.1029/2010JG001465.

KEMENES, A., FORSBERG, B.R. and MELACK, J.M. Downstream emissions of CH4 and CO2 from hydroelectric reservoirs (Tucuruí, Samuel, and Curuá-Una) in the Amazon basin. Inland Waters, 2016, 1(1), 1-8. http://dx.doi.org/10.1080/IW-6.3.980.

PEÑA, D. Análisis de datos multivariantes. España: Mac-Graw Hill Interamericana de España, 2002.

PÉREZ, G.R. and RESTREPO, J.J.R. Fundamentos de limnología neotropical. Medellín: Editorial Universidad de Antioquia, 2008.

RASERA, M., BALLESTER, M.V.R., KRUSCHE, A.V., SALIMON, C., MONTEBELO, L.A., ALIN, S.R., VICTORIA, R.L. and RICHEY, J.E. Estimating the surface area of small rivers in the southwestern Amazon and their role in CO2 outgassing. Earth Interactions, 2008, 12(6), 1-16. http://dx.doi.org/10.1175/2008EI257.1.

RENCHER, A.C. and CHRISTENSEN, W. F. Methods of multivariate analysis. New York: John Wiley and Sons, 2003.

ROSA, L.P., ELIO, M.A.U.R., SANTOS, D.O.S., MATVIENKO, B., SIKAR, E., OLIVEIRA, E. and SANTOS, D.O.S. Scientific errors in the Fearnside comments on greenhouse gas emissions (GHG) from hydroelectric dams and response to his political claiming. Climatic Change, 2006, 75(1-2), 91-102. http://dx.doi.org/10.1007/s10584-005-9046-6.

ROSA, L.P., SANTOS, M., MATVIENKO, B., SANTOS, E. and SIKAR, E. Greenhouse gas emissions from hydroelectric reservoirs in tropical regions. Climatic Change, 2004, 66(1-2), 9-21. http://dx.doi.org/10.1023/B:CLIM.0000043158.52222.ee.

ROSA, L.P., SANTOS, M.A., MATVIENKO, B., SIKAR, E., LOURENÇO, R.S.M. and MENEZES, C.F. Biogenic gas production from major Amazon reservoirs, Brazil. Hydrological Processes, 2003, 17(7), 1443-1450. http://dx.doi.org/10.1002/hyp.1295.

SAWAKUCHI, H.O., BASTVIKEN, D., SAWAKUCHI, A.O., KRUSCHE, A.V., BALLESTER, M.V. and RICHEY, J.E. Methane emissions from Amazonian Rivers and their contribution to the global methane budget. Global Change Biology, 2014, 20(9), 2829-2840. http://dx.doi.org/10.1111/gcb.12646. PMid:24890429.

SHRESTHA, S. and KAZAMA, F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling & Software, 2007, 22(4), 464-475. http://dx.doi.org/10.1016/j.envsoft.2006.02.001.

ST. LOUIS, V.L., KELLY, C.A., DUCHEMIN, É., RUDD, J.W.M. and ROSENBERG, D.M. Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate. Bioscience, 2000, 50(9), 766-775. http://dx.doi.org/10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2.

SUN, W., XIA, C., XU, M., GUO, J. and SUN, G. Application of modified water quality indices as indicators to assess the spatial and temporal trends of water quality in the Dongjiang River. Ecological Indicators, 2016, 66, 306-312. http://dx.doi.org/10.1016/j.ecolind.2016.01.054.

THORNTON, K.W., KIMMEL, B.L. and PAYNE, F.E. Reservoir limnology: ecological perspectives. New York: John Wiley and Sons, 1990.

THURSTONE, L.L. Multiple factor analysis. Psychological Review Company, 1931, 38(5), 406-427.

TREMBLAY, A., VARFALVY, L., ROEHM, C. and GARNEAU, M. Greenhouse Gas Emissions - Fluxes and Processes: Hydroelectric Reservoirs and Natural Environments. Berlin: Springer, 2011.

U.S. ENVIRONMENTAL PROTECTION AGENCY – USEPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2013. Washington: Environmental Protection Agency, 2015.

VAROL, M., GÖKOT, B., BEKLEYEN, A. and ŞEN, B. Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena, 2012, 92, 11-21. http://dx.doi.org/10.1016/j.catena.2011.11.013.

WANG, W., ROULET, N.T., KIM, Y., STRACHAN, I.B., DEL GIORGIO, P., PRAIRIE, Y.T. and TREMBLAY, A. Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir. The Science of the Total Environment, 2018, 612, 392-404. http://dx.doi.org/10.1016/j.scitotenv.2017.08.203. PMid:28863371.

WETZEL, R.G. and LIKENS, G. Limnological analyses. New York: Springer, 2013.

WETZEL, R.G. Limnology: lake and river ecosystems. 3rd ed. United States: Academic Press, 2001.

WU, E.M.-Y., TSAI, C.C., CHENG, J.F., KUO, S.L. and LU, W.T. The application of water quality monitoring data in a reservoir watershed using AMOS confirmatory factor analyses. Environmental Modeling and Assessment, 2014, 19(4), 325-333. http://dx.doi.org/10.1007/s10666-014-9407-5.

YANG, S.-S., CHEN, I.C., LIU, C.-P., LIU, L.-Y. and CHANG, C.H. Carbon dioxide and methane emissions from Tanswei River in Northern Taiwan. Atmospheric Pollution Research, 2015, 6(1), 52-61. http://dx.doi.org/10.5094/APR.2015.007.

ZHAO, Y., WU, B.F. and ZENG, Y. Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China. Biogeosciences, 2013, 10(2), 1219-1230. http://dx.doi.org/10.5194/bg-10-1219-2013.
 


Submitted date:
02/10/2017

Accepted date:
11/14/2019

Publication date:
08/03/2020

5f285b390e882520020e4938 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections