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Abstract: Aim: Rivers are linked longitudinally via the flow of water and the spatial dimensions 
of the changes in local riparian vegetation are still poorly understood. Recent modifications to the 
Native Vegetation Protection Law allow reduction of lateral buffer strips and amnesty for riparian 
vegetation removal, which might increase the fragmentation of native riparian vegetation, especially 
for Atlantic Rainforest streams. Methods: We present two case studies conducted in a stream 
draining a fragmented landscape in the Atlantic Rainforest. The stream flows through two abrupt 
transitions (forest-pasture-forest) and we investigated how far the upstream effects of a given riparian 
condition could be detected in the downstream reach for a suite of variables. Results: We show that 
the effects of land cover propagate downstream for both algal and macroinvertebrate communities. 
For some variables of interest, these effects might extend up to a km downstream from the transition. 
Conclusions: There is a need to understand how the distribution of riparian forest remnants contribute 
to maintaining watershed-scale resilience to impacts. 

Keywords: Atlantic Rainforest streams; habitat fragmentation; watersheds; land cover; longitudinal effect.

Resumo: Objetivo: Os rios são conectados longitudinalmente através do fluxo de água e as 
dimensões espaciais dos efeitos das mudanças na vegetação ripária local ainda são pouco compreendidas. 
Mudanças recentes na Lei de Proteção da Vegetação Nativa permitem a redução de faixas laterais 
de proteção e anistia para a remoção de vegetação ciliar, o que pode aumentar a fragmentação da 
vegetação nativa, especialmente para riachos da Mata Atlântica. Métodos: Apresentamos dois estudos 
de caso realizados em um riacho que drena uma paisagem fragmentada na Mata Atlântica. O riacho 
flui através de duas transições abruptas (floresta-pasto-floresta) e investigamos até que ponto os efeitos 
a montante de uma determinada condição ribeirinha poderiam ser detectados a jusante para um 
conjunto de variáveis. Resultados: Os efeitos da cobertura da terra se propagaram a jusante tanto nas 
comunidades de algas como nas de macroinvertebrados e, para algumas variáveis de interesse, esses 
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for humid small basins with high drainage density, 
such as those present in tropical rainforests (Allen 
& Pavelsky, 2018). And it is also within these basins 
that the integrity of riparian vegetation exerts the 
strongest controls in the physical, chemical and 
biological characteristics of the adjacent stream.

The effects of land-cover changes on different 
biological components of streams and rivers and the 
consequences of these to the structure and function 
of small streams is well documented (Fausch et al., 
2002; Malmqvist & Rundle, 2002; Allan, 2004). 
Riparian vegetation also influences channel 
geomorphology, sediment loading and hydrological 
conditions (Gregory  et  al., 1991). In addition, 
leaf fall from adjacent vegetation represents an 
important energy source for macroinvertebrates and 
fish communities and can strongly influence stream 
ecosystem structure and function (Newbold et al., 
1982; Simon & Collison, 2002; Sweeney & Bott, 
2004; Poff et al., 2006). These riparian effects are 
particularly important in headwater streams that 
are heavily shaded by riparian vegetation and where 
the importance of allochthonous (e.g. leaves) food 
sources is expected to be greatest (Vannote et al., 
1980; Richardson & Danehy, 2007).

Due to historical reasons, the NE, SE and 
S regions of Brazil (which contain most of the 
Atlantic rainforest domain) are the areas with the 
highest concentration of small and medium sized 
land properties (Brazilian Institute of Geography 
and Statistics IBGE, 2018). These small rural 
properties are often located in the headwaters of 
these watersheds due to higher land values associated 
with lowland areas (Silva et al., 1983). Therefore, 
even under a scenario where the new riparian 
vegetation dimensions were to be progressively 
established to the full extent required by law, 
the patchiness of native vegetation surrounding 
headwater streams will still be pervasive. To our 
knowledge, there are no studies that have quantified 
the actual river length that is going to undergo 
riparian forest loss due to these new rules (but see 
Rezende et al., 2018 for estimates of actual riparian 
vegetation cover and perspectives in degradation 
and recovery due to new legal requirements).

Despite public outcry over changes in the 
law, there are few spatially explicit studies which 

1. Introduction

The Atlantic Rainforest in Brazil is highly 
impacted by habitat fragmentation due to human 
activities such as pasture for animal rearing, 
agriculture, and urbanization (SOS Mata Atlântica 
& INPE, 2018). Over 60% of the Brazilian 
population is concentrated in the Atlantic Rainforest 
domain (Scarano & Ceotto, 2015), with most of 
the population in the Southern, South-Eastern 
and North-Eastern states of Brazil relying on 
Atlantic Rainforest watersheds for drinking water, 
agricultural production, and energy generation. 
These are, not coincidentally, the areas where 
human uses of water are the most vulnerable 
to water supply stress due to poor management 
practices (Vörösmarty et al., 2010; Gassert et al., 
2013), supply shortages caused by precipitation 
anomalies (Otto et al., 2015; Getirana, 2016) and 
environmental disasters (Fernandes  et  al., 2016; 
Gonçalves, 2019).

The Native Vegetation Protection Law (LPVN), 
popularly known as the New Brazilian Forest Code 
(Novo Código Florestal), represents the most recent 
overhaul of forestry and land use management laws. 
This new piece of legislation, introduced in 2012, 
provides for a reduction in the ranges of riparian 
vegetation buffers to be preserved under the title of 
Permanent Preservation Areas (APPs, Portuguese 
acronym). In the New Forest Code, the established 
width of an APP now varies not only considering 
the width of the river in question, but also the size 
of the rural properties. In small rural properties 
(4 to 10 Fiscal Modules, area unit that varies for each 
municipality), deforestation can reach 90% around 
rivers between 100 and 600 meters wide. Moreover, 
riparian buffer width for certain combinations of 
property size, river or stream width and recovery 
requirements can be as low as 5 m wide (SOS Mata 
Atlântica, 2016). This new piece of legislation also 
provides an amnesty to land owners that had forests 
removed as of 22 July 2008.

This amnesty for riparian vegetation removal 
for small land-owners might have more nefarious 
effects for riverine systems than anticipated. Small 
streams (first to third order) constitute over 80% 
of the river length in the world (Downing et al., 
2012), and this percentage is likely to be higher 

efeitos podem se estender até um km a jusante da transição. Conclusões: Há uma necessidade de 
entender como a distribuição dos remanescentes florestais ciliares contribui para manter a resiliência 
aos impactos na escala de bacias. 

Palavras-chave: rios de Mata Atlântica; fragmentação de habitat; bacias hidrográficas; cobertura 
do solo; efeito longitudinal.
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focus on the determination of the actual sizes 
of riparian buffers that are necessary to achieve 
specific conservation goals. In fact, most of 
the discussion about the size of APPs and legal 
reserves in available literature focuses on terrestrial 
environments (Rodrigues  et  al., 2009; Metzger, 
2010; Soares-filho et al., 2014) and the scientific 
basis for establishing the dimensions of riparian 
vegetation forest that are necessary to maintain 
riverine ecosystems is sparse, with the arguments for 
the preservation of specific dimensions of riparian 
forests being usually based on a precautionary 
principle.

Rivers are linear, spatially continuous, 
heterogeneous habitat patches that are intimately 
linked to their catchment landscapes through water 
flow (Fausch  et  al., 2002; Allan, 2004). Despite 
the large investments that usually accompany 
riparian vegetation restoration projects, the spatial 
aspects of riverine ecosystem recovery efforts are 
still poorly understood (Palmer  et  al., 2007). 
Remediation actions for watershed scale impacts are 
rarely implemented in the whole watershed, with 
priority actions being selected based on tradeoffs 
among environmental, economic, political, and 
social factors. Restoration actions are often spatially 
constrained by the available candidate sections, 
as well as by the amount of river length that such 
projects encompass.

From a watershed management perspective, 
it is important to determine how heterogeneous 
conditions of riparian vegetation interact 
longitudinally and how these impacts are 
propagated along the watershed (Harding  et  al., 
2006; Feijó-lima  et  al., 2018). This longitudinal 
perspective of upstream impacts is typical of running 
waters and has rarely been employed (but see Suga & 
Tanaka, 2013; Goss et al., 2014; Tanaka et al., 2015; 
Feijó-lima  et  al., 2018). The extension of these 
transition zones and the length of these longitudinal 
effects may vary substantially depending on the 
hydrology and geomorphology (e.g. discharge, 
sediment, etc.) of the stream, as well as on the 
response variable considered (e.g. temperature, algae 
and invertebrate biomass, primary and secondary 
productivity). Many of these variables might show 
a spatial lag in their response to riparian transitions, 
which we have termed as the “penetrance effect”.

The pattern and magnitude of change of a given 
variable in response to riparian transition has rarely 
been investigated and even less so the distance 
necessary for it to achieve a new stable condition 
(Figure  1). Abiotic variables and biological 

communities can respond differently to these abrupt 
changes, generally showing a spatial lag in response 
to riparian conditions (Scarsbrook & Halliday, 
1999; Niyogi et al., 2007; Suga & Tanaka, 2013; 
Goss et  al., 2014; Feijó-lima et  al., 2018). Some 
variables can respond more quickly to the riparian 
transitions (e.g. temperature, algae), while others 
require longer distances to fully transition into a new 
stable state (e.g. invertebrate community metrics, 
decomposition and nutrient cycling). Different 
models and scenarios can describe how an abiotic 
or biotic variable “penetrates” into the downstream 
condition until reaching a new downstream steady 
state (Figure 1B and C).

Here, we present two case studies conducted 
in a stream draining a fragmented landscape in 
the Atlantic Rainforest. The stream presents two 
abrupt transitions (forest-pasture-forest) and our 
objective was to investigate the spatial dimensions 
of the response of a suite of variables to abrupt 
riparian vegetation transitions. We applied the 
penetrance framework for a suite of variables of 
interest along these abrupt riparian boundaries, in 
order to quantify either the downstream buffering 
or restoration effect provided by the presence of 
these forest remnants.

2. Case Studies of Transition Zones in a 
Tropical Stream

We studied a second-order stream, Itaperiti, a 
tributary of the Guapiaçu River, in Rio de Janeiro 
State, Brazil. The Itaperiti stream is located in the 
Atlantic Rainforest and originates from a preserved 
forest (Três Picos State Park) and flows into a mosaic 
of vegetation, including pasture, agriculture, and 
forest remnants. We conducted a high-resolution 
spatial sampling into two continuous transition 
zones - forest-to-pasture and pasture-to-forest 
remnant - collecting physical, chemical, and 
biological samples to quantitatively estimate 
longitudinal spatial patterns.

2.1. Case study 1

We studied the upstream abrupt transition of the 
Itaperiti stream, from a forested undisturbed section 
to a downstream pasture section. The sampling was 
conducted at every 75 m for 1050 m. We quantified 
a suite of physical, chemical and biological variables, 
as well as benthic invertebrate community metrics. 
In summary, selected variables that presented 
monotonic behavior along the land cover transitions 
were regressed against distance using nonlinear 
models. These models were produced based on the 
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assumption that a stable condition for a given variable 
could be detected either upstream, downstream 
or both, along the sampled transition (Figure 1). 
Model selection was performed using the Bayesian 
Information Criterion (BIC) (Raftery, 1995).

Along that abrupt transition, we were able 
to quantify downstream lags in key biological 
variables, such as chlorophyll a concentration and 
invertebrate functional feeding group proportions, to 
which both variables responded with a downstream 
lag to the changes in canopy cover (Figure  2). 
It is especially interesting to observe the cascading 
effect of riparian change through the different 
biological compartments: a decrease in canopy cover 
is followed by an increase in benthic chlorophyll a 
concentration. The algae-associated invertebrates 
(collector-gatherers) followed the chlorophyll a 
response, but with a delay (Figure 2). The main results 
of this study can be found in Feijó-Lima et al. (2018).

2.2. Case study 2

Case study 2 was also performed in the Itaperiti 
stream, but we sampled an additional transition. 
We used both the forest-to-pasture transition cited 

Figure 1. Expected behavior of two potential variables (panel B and C) in response to the change in riparian condition 
(panel A). The dark green area indicates the stable riparian condition upstream, the grey area indicates the terrestrial 
transition in riparian vegetation from the upstream to the downstream condition, and the light green area indicates 
the stable downstream riparian condition. Panel B and C show the potential responses of two different variables to 
the changes in the terrestrial riparian condition, transitioning from the upstream steady state to the downstream 
steady state. The variable in panel B shows a much faster response to the changes in riparian conditions, reaching 
the downstream steady state at a shorter distance compared to the variable shown in panel C. The variable in panel 
B also shows a delayed response compared to the variable in panel C.

Figure 2. Selected nonlinear models for canopy cover 
percentage (black), benthic chlorophyll a concentration 
(green), and collector-gatherer invertebrate proportion 
throughout the 15 sampling sites along the forest-pasture 
transition in the Itaperiti stream (Rio de Janeiro, Brazil). 
Note different scales for the different variables.
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in the previous study, as well as a second pasture 
to forest transition located downstream from the 
pasture section. By having a forest-pasture-forest 
transition design, we could test the potential of the 
downstream forest section to mitigate the effects 
of the upstream pasture reach. We could thus 
test if and the distance needed to some biological 
variables to return to the steady state of the upstream 
undisturbed forest section.

We performed an algal accrual experiment, using 
ceramic tiles placed in the stream for 14 days in each 
sampling point. We measured algal stock both by 
chlorophyll a and ash-free dry mass measurements. 
We also quantified algal taxonomic composition 
through microscopic analysis and algal pigments via 
fluorescence using a PHYTO-PAM phytoplankton 
analyzer (Heinz Walz GmbH, Effeltrich, Germany) 
(Lürling et al., 2018). Nonlinear model fitting and 
selection was performed using the same methods 
described for case study 1.

Our results showed that the proportion of 
algal brown pigments mirrored the change in 
riparian cover, showing a similar sigmoidal pattern 
in both transitions as canopy cover change, but 
with a spatial lag in response relative to changes in 
riparian cover (Figure 3). These results suggest that 
the downstream forest remnant buffers the effect 
of the upstream pasture, as algal condition returns 
to its pre-impact state - i.e. similar levels as in the 
non-impacted upstream forest. Other variables 
measured responded in a different shape to the 
riparian transitions. For instance, cyanobacteria had 

not been recorded in the upstream forest reach, but 
they appeared in the pasture section, although in 
lower abundance, in the downstream forest remnant. 
Along the second transition, the downstream forest 
fragment did not reset, but only partially mitigated 
the effect of the upstream pasture, decreasing but 
not eliminating cyanobacteria presence.

3. Future Directions, Information Gaps: 
What is Urgent to Do?

Restoring and maintaining forests and forest 
remnants can have positive effects in promoting 
stream health and ecosystem services. Upstream 
riparian patches can buffer downstream ecological 
conditions when transitioning into reaches without 
riparian cover. Conversely, forest fragments located 
downstream of impacted reaches (e.g. pasture, 
agriculture) could mitigate the negative effects 
of the lack of riparian cover and restore stream 
functioning, in a so-called “forest reset effect” 
(Harding et al., 2006). However, impacts of land 
use at the catchment scale may outweigh the benefits 
of local stream riparian buffers (Wahl et al., 2013) 
and little is known about what the extension of the 
remnants should be in order to maintain or restore 
stream ecological integrity.

Being able to quantify the downstream 
mitigation potential of riparian forest remnants is 
of utmost importance in order to guarantee that 
management, conservation and restoration efforts 
are effective in maintaining stream ecosystems 
health and integrity as well as their ability in 
providing ecosystem services. In order to do so, we 
need a comprehensive theoretical framework for 
longitudinally monitoring and assessment of the 
success of riverine restoration efforts. Ultimately, 
understanding the connectivity between restored 
areas is critical to understanding how restoration 
actions interact longitudinally and how the spatial 
dimensions and distribution of restoration efforts 
contribute to maintaining watershed resilience.

More studies should therefore focus on assessing 
not only local but longitudinal mitigation effects 
of riparian reforestation efforts. We believe that 
the modeling approach outlined in this report 
represents a first step towards an objective approach 
for quantifying the longitudinal dimensions of 
riparian land use impacts on streams. This approach 
will likely benefit from cross-system comparisons 
to account for variation in discharge, velocity, 
and other environmental variables, as well as 
comparisons with other theoretical frameworks 
(e.g., nutrient spiraling).

Figure 3. Selected models for canopy cover percentage 
(top panel) and brown pigments percentage in algae 
samples (bottom panel) throughout the 22 sampling 
sites along the forest-pasture-forest transitions in the 
Itaperiti stream (Rio de Janeiro, Brazil). Lines represent 
nonlinear fits for the upstream (Black) and downstream 
(Green) transitions.
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With the penetrance framework we provide 
a starting point that can be used to evaluate the 
patchiness of previous restoration efforts as a natural 
experiment. From our two case studies we showed 
that effects seem to not always be symmetrical as 
to distance, magnitude or penetration between 
adjacent stream segments. In addition, as flow 
characteristics change, it is likely that so will 
the distance downstream that an impact will be 
propagated.

There is a current need to carry out studies that 
evaluate the impacts of riparian forest loss on aquatic 
ecosystems in a spatially explicit way (sensu Feld, 
2013). Such studies could identify the longitudinal 
dimensions of change that accompany the loss 
or restoration of riparian vegetation and provide 
insights on strategic management practices that can 
help maintaining the integrity of headwater streams 
in the face of current and future deforestation 
pressures. We strongly believe that it is important to 
study the joint effects of lateral land-cover changes 
and downstream flow and material transport to 
understand how changes in riparian conditions are 
manifested downstream and assess the effectiveness 
of a minimum riparian forest size protection able 
to maintain healthy streams.
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